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Differential Slicing: Identifying Causal Execution Differences

for Security Applications

Noah M. Johnson

University of California, Berkeley

Abstract

A security analyst often needs to understand two runs of

the same program that exhibit a difference in program

state or output. This is important, for example, for vul-

nerability analysis, as well as for analyzing a malware

program that features different behaviors when run in

different environments. In this paper we propose a dif-

ferential slicing approach that automates the analysis of

such execution differences. Differential slicing outputs

a causal difference graph that captures the input differ-

ences that triggered the observed difference and the causal

path of differences that led from those input differences

to the observed difference. The analyst uses the graph to

quickly understand the observed difference. We imple-

ment differential slicing and evaluate it on the analysis

of 11 real-world vulnerabilities and 2 malware samples

with environment-dependent behaviors. We also evaluate

it in an informal user study with two vulnerability ana-

lysts. Our results show that differential slicing success-

fully identifies the input differences that caused the ob-

served difference and that the causal difference graph sig-

nificantly reduces the amount of time and effort required

for an analyst to understand the observed difference.

1 Introduction

Often, a security analyst needs to understand two runs

of the same program that contain an execution difference

of interest. For example, the security analyst may have

a trace of an execution that led to a program crash and

another trace of an execution of the same program with

a similar input that did not produce a crash. Here, the

analyst wants to understand the crash and why one pro-

gram input triggered it but the other one did not, and use

this knowledge to determine whether the bug causing the

crash is exploitable, how to exploit it, and how to patch it.

For another example, a security analyst may use man-

ual testing or previously proposed techniques to find

trigger-based behaviors in malware [5, 8, 9, 17]. The ana-

lyst may obtain an execution trace of a piece of malware

(e.g., a spam bot) in environment A, which does not ex-

hibit malicious behavior (e.g., does not spam), and an-

other trace of an execution of the same piece of malware

in environment B, which does exhibit malicious behavior

(e.g., does spam). However, knowing how to trigger the

hidden behavior is not enough for many security applica-

tions. It is often important to know exactly why and how

the trigger occurred, for example, in order to write a rule

that bypasses the trigger [14]. Suppose there are many

differences between environments A and B. The analyst

needs to understand which subset of environment differ-

ences are truly relevant to the trigger, as well as locate the

checks that the malware performs on those environment

differences.

The two scenarios are similar in that one execution

trace contains some unexpected behavior (e.g., the crash

for the benign program and the non-malicious behavior

for the malware) and the other trace contains some ex-

pected behavior. In both scenarios the analyst would like

to understand why that execution difference, which we

term the target difference, exists. This is a pre-requisite

for the analyst to act, i.e., to write a patch or exploit for

the vulnerability and to write a rule to bypass the trigger.

In addition, the analyst needs to perform this analysis di-

rectly on binary programs because source code is often

not available.

To automate this analysis we propose a novel differen-

tial slicing approach. Given traces of two program runs

and the target difference, our approach provides succinct

information to the analyst about 1) the parts of the pro-

gram input or environment that caused the target differ-

ence, and 2) the sequence of events that led to the target

difference.

Automating these two tasks is important for the analyst

because manually comparing and sieving through traces

of two executions of the same program to answer these

questions is a challenging, time-consuming task. This

is because, in addition to the target difference, there are

often many other execution differences due to loops that

iterate a different number of times in each run, and dif-

ferences in program input that are not relevant to the tar-

get difference (e.g., to the crash) but still introduce differ-

ences between the executions.

We implement our differential slicing approach and

1



evaluate it for two different applications. First, we use it

to analyze 11 real-world vulnerabilities. Our results show

that the output graph often reduces the number of instruc-

tions that an analyst needs to examine for understanding

the vulnerability from hundreds of thousands to a few

dozen. We confirm this in a user study with two vulnera-

bility analysts, which shows that our graphs significantly

reduce the amount of time and effort required for under-

standing two vulnerabilities in Adobe Reader. Second,

we evaluate differential slicing on 2 malware samples that

check environment conditions before deciding whether to

perform malicious actions. Our results show that differ-

ential slicing identifies the specific parts of the environ-

ment that the malware uses and that the output graphs

succinctly capture the checks the malware performs on

them.

This paper makes the following contributions:

• We propose differential slicing, a novel technique

which, given traces of two executions of the same

program containing a target difference, automati-

cally finds the input and environment differences that

caused the target difference, and outputs a causal dif-

ference graph that succinctly captures the sequence

of events leading to the target difference.

• We propose an address normalization technique that

enables identifying equivalent memory addresses

across program executions. Such normalization en-

ables pruning equivalent addresses from the causal

difference graph and is important for scalability.

• We design an efficient offline trace alignment algo-

rithm based on Execution Indexing [30] that aligns

the execution traces for two runs of the same pro-

gram in a single pass over both traces. It outputs the

alignment regions that represent the similarities and

differences between both executions.

• We implement differential slicing in a tool that works

directly on binary programs. We evaluate it on 11

different vulnerabilities and 2 malware samples. Our

evaluation includes an informal user study with 2

vulnerability analysts and demonstrates that the out-

put of our tool can significantly reduce the amount

of time and effort required for understanding a vul-

nerability.

2 Problem Definition and Overview

In this section, we describe the problem setting, give the

problem definition, and present an overview of our ap-

proach.

2.1 Problem Setting

We consider the following problem setting. We are given

execution traces of two runs of the same program that con-

tain some target execution difference to be analyzed. The

two execution traces may be generated from two different

program inputs or from the same program running in two

different system environments.

For example, in crash analysis, a security analyst may

have two execution traces obtained by running a program

with two similar inputs where one input causes a crash

and the other one does not. Here, the analyst’s goal is first

to understand the crash (informally, what caused it and

how it came to happen), so that she can patch or exploit

it.

In a different application, a security analyst is given ex-

ecution traces of a malware program running in two sys-

tem environments, where the malware behaves differently

in both environments, e.g., launches a denial-of-service

attack in one environment but not in the other. Here, the

analyst has access to two environments that trigger the

different behaviors, but still needs to understand which

parts of the environment (e.g., the system date) as well as

which checks (e.g., it was Feb. 24th, 2004) caused the dif-

ferent behavior, so that she can write a rule that bypasses

the trigger.

We can unify both cases by considering the system en-

vironment as a program input. The analyst’s goal is then

to understand the target difference, which comprises: 1)

identifying the input differences that caused the target dif-

ference, and 2) understanding the sequence of events that

led from the input differences to the target difference.

To refer to both execution traces easily, we term the

trace that contains the unexpected behavior (e.g., the crash

of a benign program or the absence of malicious behav-

ior) from a malware program, the failing trace and the

other one the passing trace. The corresponding inputs (or

environments) are the passing input and the failing input.

Note that how to obtain the different inputs and envi-

ronments that cause the target difference is application de-

pendent and out of scope of this paper. In many security

applications such as the two scenarios described above,

analysts routinely obtain such different inputs and envi-

ronments.

Motivating example. A motivating crash analysis exam-

ple for demonstrating our approach is shown in Figure 1.

For ease of understanding we present the example as C

code even though our approach works at the binary level.

This simple program first copies its two arguments and

then compares them. It contains a bug because the length

of the input strings is checked before allocation, but not

before copying, which causes the program to crash if it

copies a value into an unallocated buffer. In this example,

the failing trace is obtained by running vuln cmp ""
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1 char ∗ s1=NULL, ∗ s2=NULL;

2 i n t main ( i n t argc , char ∗∗ a rgv ) {
3 i f ( a r g c < 3)

4 re turn 1 ;

5 i n t l e n 1 = s t r l e n ( a rgv [ 1 ] ) ;

6 i n t l e n 2 = s t r l e n ( a rgv [ 2 ] ) ;

7 i f ( l e n 1 )

8 s1 = ( char ∗ ) m a l l o c ( l e n 1 ) ;

9 i f ( l e n 2 )

10 s2 = ( char ∗ ) m a l l o c ( l e n 2 ) ;

11 s t r n c p y ( s1 , a rgv [ 1 ] , l e n 1 ) ;

12 s t r n c p y ( s2 , a rgv [ 2 ] , l e n 2 ) ;

13 i f ( s t r c m p ( s1 , s2 ) != 0 )

14 p r i n t f ( ” S t r i n g s a r e n o t e q u a l \n ” ) ;

15 re turn 0 ;

16 }

Figure 1: Motivating example program, vuln cmp.c.

foo, which produces a crash, while the passing trace is

obtained by running vuln cmp bar bazaar, which

successfully prints that the strings are not equal and exits.

Figure 2 shows the execution traces for both runs. The

target difference is the crashing statement in the failing

trace.

In this example the analyst would like to understand

that the first argument of the program caused the crash

while the second argument was not involved. She would

also like to understand the causal path that led from the

difference in the first argument to the crash and, in partic-

ular, that the crash happens because the allocation at state-

ment #8 was not executed in the failing run. A commonly

used technique for establishing a causal path in one exe-

cution is dynamic slicing [15]. However, dynamic slicing

on the failing trace does not help to identify the cause of

this crash since the cause is a statement that should have

executed, but did not, and thus is not present in the failing

trace.

2.2 Problem Definition

Our problem is how to build the causal difference graph,

which captures the sequences of execution differences

that led from the input differences to the target differ-

ence. Intuitively, execution differences are values that

differ across runs, or statements that executed in only

one run. However, determining that a value differs, or

that a statement appears only in one trace, requires first

establishing correspondence between statements in both

traces. This is difficult because the same statement may

appear multiple times in an execution due to loops, re-

cursive functions, or invocations of the same function in

different contexts. The process of establishing such corre-

spondence is called trace alignment and is a pre-requisite

for identifying execution differences.

Passing run

/* argc = 3 */
3: if(argc<3) 
/* argv[1] = "bar" */
5: int len1 = strlen(argv[1]) 
/* argv[2] = "bazaar" */
6: int len2 = strlen(argv[2]) 
/* len1 = 3 */
7: if (len1)  

/* len2 = 6 */
9: if (len2)
/* len2 = 6 */ 
10: s2 = (char *)malloc(len2)
/* s1 = (ptr to 3-byte buffer),
    argv[1] = "bar", 
    len1 = 3 */
11: strncpy(s1, argv[1], len1)

crash

/* len1 = 3 */
8: s1 = (char *)malloc(len1)

/* s1 = (ptr to 6-byte buffer),
    argv[2] = "bazaar",
    len2 = 6 */
12: strncpy(s2, argv[2], len2)
...
15: return 0

V

V

V

F

V

V

V

F

F

Failing run

_ /* argc = 3 */
3: if(argc<3)
/* argv[1] = "" */
5: int len1 = strlen(argv[1])
/* argv[2] = "foo" */
6: int len2 = strlen(argv[2])
/* len1 = 0 */
7: if (len1)

/* len2 = 3 */
9: if (len2)
/* len2 = 3 */
10: s2 = (char *)malloc(len2)
/* s1 = NULL,
    argv[1] = "",
    len1 = 0 */
11: strncpy(s1, argv[1], len1)

Figure 2: Traces and alignment for motivating example.

V and F refer to value and flow differences, respectively

(Section 2.2).

Trace alignment. Given passing (p) and failing (f ) traces

of size n and m instructions, respectively, we say that

a pair of statements from these traces (px, fy) s.t. x ∈

[1, n], y ∈ [1,m] are aligned if they correspond to each

other (i.e., are instances of the same static statement in

the application’s code). We say that a statement in one

trace is disaligned if it has no corresponding statement

in the other trace, which we represent with a pair (px,⊥)

or (⊥,fy). By definition, an instruction in a trace may

be aligned with one and only one instruction in the other

trace.

A single static statement may be executed more than

once in any given run, due to loops, recursive functions,

etc. In such cases, the notion of alignment is ambiguous

since a single instruction in one trace may correspond to

multiple instructions in the other trace.

As we describe in Section 3.2, once this ambiguity is

resolved for any initial pair of corresponding instructions,

the alignment for the rest of the trace is well-defined and

unique. Consequently, we do not attempt to define a “cor-

rect” or “optimal” alignment for a given pair of traces;

instead, the alignment algorithm relies on the selection of

a pair of corresponding instructions that are postulated as

being aligned for the purpose of bootstrapping the align-

ment algorithm. The selection of this initial pair of in-

structions, called the anchor point, determines the overall

alignment results.

Since execution traces can contain many statements,
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we group them together into regions based on their

alignment. An aligned region is a maximal sequence

of consecutive aligned statements from both traces:

(px, fy), (px+1, fy+1), . . . , (px+k, fy+k) s.t. ∀i ∈ [0, k]
px+i, fy+i 6=⊥. A disaligned region is a maximal se-

quence of consecutive disaligned statements from a single

trace: (px,⊥), . . . , (px+k,⊥) or (⊥, fx), . . . , (⊥, fx+k).
In any given trace, a disaligned region is always imme-

diately preceded by an aligned region. We term the last

statement in an aligned region a divergence point because

it creates a disaligned region by transferring control to dif-

ferent statements in both traces. Note that a divergence

point may not necessarily precede a disaligned region in

both traces; a single trace may have consecutive inde-

pendent aligned regions if the other trace executes one or

more instructions before realigning with the first trace at

its next instruction. This situation is demonstrated by the

failing run in Figure 2 – statements #3–#7 and #9–#11

form two aligned regions that are consecutive (in the fail-

ing trace) but disjoint due to the execution of statement

#8 in the passing run. In this case, we still refer to the

last statement in the first aligned region (e.g., statement

#7 in the running example) as a divergence point because

it causes a disaligned statement (e.g., statement #8) to be

executed in the other trace.

Given a disaligned region, we call the divergence point

of the immediately preceding aligned region, the immedi-

ate divergence point.

Figure 2 shows the alignment for our motivating ex-

ample and illustrates these definitions. The figure shows

that the two executions are aligned until branch statement

#7 executes. Here, statements #3–#7 in each trace form

an aligned region. Branch statement #7 is a divergence

point; it evaluates to true in the passing run and to false in

the failing run, creating a disaligned region because state-

ment #8 executes in the passing run but not in the failing

run (an execution omission). The two executions realign

at statement #9 and remain aligned until statement #11

produces the crash in the failing trace. Thus, statements

#9–#11 form another aligned region.

Execution differences. Given two aligned executions, we

define two types of execution differences: flow differences

and value differences. Flow differences are defined on

statements and value differences are defined on variables.

A flow difference is simply a disaligned statement. For

example, statement #8 in Figure 2 is a flow difference.

A value difference is a variable used in an aligned state-

ment that has a different value in both executions. For ex-

ample, the len2 variable in statement #10 in Figure 2 is a

value difference because it has value 6 in the passing run

and value 3 in the failing run.

A statement may use multiple variables. For example,

when dereferencing a pointer, the value of the pointer and

the memory contents at that address are both used. In

this case, either (or both) of these variables may be value

differences, as would be the case if the program either

wrote different values to the same memory location or set

a pointer variable to different addresses in the two execu-

tions.

We say that a statement has a value difference when

it uses one or more variables that are value differences.

For example, statement #11 in Figure 2 has 3 value dif-

ferences: s1, argv[1], and len1. Each statement in

Figure 2 is marked on the left with a V to indicate that

it contains a value difference, an F to indicate that it is a

flow difference, or - otherwise.

Finally, we define an input difference as any value

difference that is not caused by another observed (i.e.,

traced) execution difference. Conceptually, input differ-

ences are operands holding different values across exe-

cutions, where neither value is defined in its respective

trace. Concretely, they are value differences whose data

slice is empty in both traces. Input differences may in-

clude environment differences (e.g., the system time) or

differences in program inputs (e.g., files or network data),

and are typically introduced into the execution via system

call outputs.

In the running example, the input difference is the value

of the argv[1] parameter of the main function, which is

the source of all the execution differences that led to the

crash.

Causal difference graph. The causal difference graph is

a central concept of our differential slicing approach, al-

lowing an analyst to quickly understand which of the (pos-

sibly multiple) input differences between the runs caused

the target difference and exactly how those input differ-

ences led the target difference, step by step. We first mo-

tivate the causual difference graph from an intuitive point

of view then formally define it in Section 4.1.

The causal difference graph contains execution differ-

ences leading from the input differences to the target dif-

ference. Nodes in the graph represent statements. Our ap-

proach, described in the next section, ensures that every

statement in the graph captures an execution difference—

in other words, each node is either a flow difference or

an aligned statment containing one or more value differ-

ences.

Directed edges imply causality: a given execution dif-

ference directly caused the execution differences repre-

sented by its immediate successor nodes. Undirected

edges indicate alignment between a pair of instructions

(one from each trace).

The causal difference graph is rooted at the input (or

environment) differences because those are the root cause

of all execution differences.

The chain of execution differences represented by the

graph explains how and why the target difference oc-

curred by capturing the full sequence of events, starting
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Figure 3: Source code level causal difference graph for the motivating example. Undirected edges indicate alignment.

Dotted directed edges indicate control dependence, solid directed edges indicate data dependence.

from the input differences, that led to the target difference.

The graph is more succinct than a full causal path (e.g.,

program slice [27]) because it only contains flow differ-

ences and statements that have value differences. This ap-

proach is motivated by the observation that any execution

difference—including the target difference—can only be

caused by previous execution differences, never by state-

ments that have no value differences or are not flow differ-

ences. Even nondeterminism (e.g., due to external differ-

ences) necessarily manifests as a flow or value difference

in the program execution.1

The causal difference graph is also more succinct than

the full list of execution differences between both runs,

since not all execution differences may be relevant to the

target difference. For example, in Figure 1, statement #6

contains a value difference because the value of len2 dif-

fers in both runs. However, statement #6 is not relevant to

the crash and is therefore not included in the causal dif-

ference graph.

Figure 3 presents the graph for our motivating exam-

ple. Starting from the bottom, it begins with the target

difference, which is statement #11 because it crashes in

the failing run, continues with the flow difference at #8,

the len1 value difference at #7, the argv[1] value dif-

ference at #5, and ends at argv[1], the sole input dif-

ference that is relevant to the crash.

2.3 Approach Overview

To compute the causal difference graph, we propose a

new approach called differential slicing. Figure 4 presents

an overview of our approach. It comprises three phases:

preparation, trace alignment, and Slice-Align.

1We make the assumption that all output, including side effects, pro-

duced by the execution of any instruction is a deterministic function

of the data read (directly or indirectly) by that instruction. We are not

presently aware of any x86 instructions that violate this assumption.

The preparation phase has two steps. First, the pro-

gram is executed twice, on the given input(s), inside the

execution monitor [24]. The execution monitor tracks the

program execution for each run and produces execution

traces, Tf and Tp, containing all executed instructions and

the contents of each instruction’s operands. In addition,

it also produces allocation logs Af and Ap that capture

information about the heap allocation/deallocation opera-

tions performed by the program during each run.

The second preparation step is post-dominator extrac-

tion, which takes as input the program and the execution

traces, computes the control-flow graph (CFG) for each

function that appears in the execution traces, and outputs

the immediate post-dominator information for those func-

tions. Intuitively, immediate post-dominance is analogous

to the re-convergence point of a branch in structured pro-

gramming (e.g., the closing curly bracket in C).2

Post-dominance can be computed efficiently using

compiler algorithms [18].

After the preparation completes, the next phase is trace

alignment, which is required for identifying the execution

differences that form the causal difference graph. This

phase uses an efficient trace alignment algorithm that we

have developed based on Execution Indexing [30]. It out-

puts the aligned/disaligned regions in a single pass over

the traces.

The final phase is Slice-Align, which is needed because

many execution differences identified using the align-

ment results may not be relevant to the target difference.

Slice-Align focuses the analysis on the execution differ-

ences that are causally relevant to the target difference.

Slice-Align builds the causal difference graph dynami-

cally as the execution traces are scanned backwards in

2More formally, a point p in a CFG post-dominates a point i if ev-

ery path from i to the exit passes through p, and immediately post-

dominates it if there is no other p′ for which p′ post-dominates i and

p post-dominates p′.
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Figure 4: System architecture. The darker box was previously available.

lockstep, starting from the target difference. It alternately

employs dynamic slicing and the alignment results. While

no flow differences are found, it uses dynamic slicing to

establish the sequence of value differences that affect the

target. When a flow difference is encountered, e.g., an

execution omission, it uses the alignment results to iden-

tify the divergence point that dominates the disaligned re-

gions. Once found, dynamic slicing is used to capture the

value differences that caused that divergence point until

another flow difference is found. This sequence repeats

until the input differences are reached.

Graph layers. The resulting Basic graph contains only

the execution differences that are relevant to the target dif-

ference. Disaligned regions in the Basic graph are sum-

marized as a single node to help the analyst quickly un-

derstand which flow differences are relevant to the target

difference and why they happened. An analyst who is in-

terested in what happened in those disaligned regions can

request what we call an Enhanced graph, which expands

the Basic graph by incorporating the relevant dependen-

cies in a disaligned region. This multi-layer approach

gives the analyst a small Basic graph that often suffices

for analysis as well as the ability to produce finer-grained

Enhanced graphs for specific divergence regions.

Address normalization. An important feature for the

scalability of our approach is the ability to prune edges

of operands that have the same value in both runs (i.e.,

operands that are not value differences). The motivation

for this pruning is that identical values in an aligned state-

ment cannot cause execution differences. In other words,

any execution difference must be caused by an earlier ex-

ecution difference (or input difference). Without pruning,

the graph would include nodes explaining how the value

of every variable in aligned instructions was computed. If

the value is identical between runs, this additional infor-

mation is not helpful for understanding the target differ-

ence.

Operands that are used as immediate values (e.g., the

len1 variable in instruction #11) can be pruned by

checking their values for equality. For example, if the

len1 variable was the same for instruction #11 in both

traces, we could exclude the edge for this variable from

the graph, since it could not have contributed the target

execution difference.

Unfortunately, this simple comparison is insufficient

for pointer operands. Consider that in binary code, many

operands contain pointers that may have different values

across runs but are semantically equivalent to each other

(e.g., the objects pointed to are equivalent). For example,

the runtime address of the argv array may be different in

both runs depending on, among other factors, the memory

layout when the array was allocated by the loader. In this

case, even if the addresses are different, the fact that the

operand contains a pointer to the same object (namely, the

argv array) means that it should not be treated as a value

difference for the purpose of the causal difference graph.

To address this issue and enable pruning for pointers,

we have developed an address normalization technique,

described in Section 4.5, that identifies operands holding

equivalent pointers. By pruning these operands we obtain

graphs that are in some cases one to two orders of magni-

tude smaller than without the address normalization.

Implementation. We have implemented differential slic-

ing in approximately 6k lines of Objective Caml code.

The trace alignment and post-dominator modules are writ-

ten in 4k lines of code (excluding the call stack code and

APIs for creating control flow graphs, which we adapted

for our system from previous work). The Slice-Align

module is written in 2k lines of code. The execution mon-

itor was previously available [24].

3 Trace Alignment

The first step in our differential slicing approach is to

align the failing and passing execution traces to identify

similarities and differences between the executions. Our

trace alignment algorithm builds on the previously pro-

posed Execution Indexing technique [30], where an ex-

ecution index uniquely identifies a point in an execution

and can be used to establish correspondence across execu-

tions. Unlike previous work, we propose an efficient of-

fline alignment trace algorithm that requires just a single

pass over the traces and works directly on binaries without

access to source code.

In this section, we first provide background information

on the Execution Indexing technique in Section 3.1 and
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then we describe our trace alignment algorithm in Sec-

tion 3.2.

3.1 Background: Execution Indexing

Execution Indexing captures the structure of the program

at any given point in the execution, uniquely identifying

the execution point, and uses that structure to establish a

correspondence between execution points across multiple

executions of the program [30]. Compared to using static

program points to establish a correspondence, Execution

Indexing is able to align points inside loops and functions

with multiple call sites.

Xin et al. propose an online algorithm to compute the

current execution index as the execution progresses. It

uses an indexing stack, where an entry is pushed to the

stack when a branch or method call is seen in the exe-

cution, and an entry is popped from the stack if the im-

mediate post-dominator of the branch is executed or the

method returns. Note that a statement may be the imme-

diate post-dominator of multiple branches or call state-

ments and can thus pop multiple entries from the stack.

For example, a return instruction is the immediate post-

dominator of all the branches in the stack for the current

function invocation. Xin et al. also propose optimizations

to minimize the number of push and pop operations, for

example, by avoiding updating the indexing stack for in-

structions with a single static control dependence and us-

ing counters (rather than consecutive push operations) for

loops and repeated predicates such as the REPxx family

of x86 instructions.

Execution Indexing captures the structure of the exe-

cution starting at an execution point that is called an an-

chor point. To compare the structure of two executions,

Execution Indexing requires as input a point in each ex-

ecution considered semantically equivalent (i.e., already

aligned). These can be automatically defined or provided

by the analyst. We explain our anchor point selection in

Section 3.2.

3.2 Trace Alignment Algorithm

Our trace alignment algorithm compares two execution

traces representing different runs of the same program.

There are two main issues in pairwise trace alignment:

designing an efficient algorithm that scales to large traces,

and selecting anchor points. We discuss both issues next.

Algorithm. In this paper we propose an efficient trace

alignment implementation that performs a single pass

over both traces in parallel, computing the execution in-

dex and the alignment along the way. Intuitively, the goal

of the alignment algorithm is to compute the execution

index of each instruction and mark as aligned the earli-

Input: A0, A1 // anchor points

Output: RL // list of aligned and disaligned regions

EI0, EI1 : execution index stacks← Stack.empty();
insn0, insn1 ← A0, A1; // current instructions

RL← ∅;

while insn0 6=⊥ ∨ insn1 6=⊥ do
// Create new aligned region starting at insn0,insn1

cr ← regionBegin(insn0, insn1, aligned)
// Aligned-Loop: Traces aligned. Walk until disaligned.

while EI0 = EI1 do

foreach i ∈ 0, 1 do
EIi ← updateIndex(EIi, insni);
// Extend aligned region with current instruction

cr ← regionExtend(insni, cr);
insni++;

end

end

RL← RL ∪ cr;

// Create new disaligned region at first disaligned insts.

cr ← regionBegin(insn0, insn1, disaligned)
// Disaligned-Loop: Traces disaligned. Walk until realigned.

while EI0 6= EI1 do

repeat
// Preferentially select trace with larger EI stack

j ← (|EI0| > |EI1|) ? 0 : 1;

// Walk one instruction in selected trace

EIj ← updateIndex(EIj , insnj);
cr ← regionExtend(insnj , cr);
insnj++;

until |EI0| = |EI1| ;

end

RL← RL ∪ cr;
end

Figure 5: Algorithm for trace alignment.

est not-yet-aligned instructions from each trace that have

identical execution indexes.

Our trace alignment algorithm is shown in Figure 5.

The function updateIndex updates the Execution In-

dexing stack for each trace. If the current instruction is

a control-transfer instruction, it selects the correct post-

dominator by looking at the current and next instruction

(i.e., the target of the control flow transfer) and pushes

the post-dominator into the stack. While the current in-

struction corresponds to the post-dominator at the top

of the stack, it pops it. Our experience shows that it

is important to handle unstructured control flow (e.g.,

setjmp/longjmp), which requires building robust call

stack tracking code [6].

The trace alignment algorithm proceeds as follows.

It starts with both anchor points being processed in the

Aligned-Loop. This loop creates an aligned region by

stepping through both traces until a disaligned instruction

is found. While the Execution Index (EI) for the cur-

rent instruction in each trace (insn0,insn1) is the same,

both instructions are added to the current alignment re-

gion (cr) and the Execution Index is updated for each

trace (updateIndex).
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At a divergence point, the previous aligned region is

added to the output (RL), a new disaligned region is cre-

ated (cr) and Disaligned-Loop is entered. This loop

searches for the realignment point in the two traces. Re-

alignment can only happen after the top entry (at the time

of disalignment) on the stack has been popped, because in

order for the Execution Indexes to match, any additional

entries added to the stack after this point will first need to

be popped. Intuitively, this means that when the execu-

tions diverge, the first possible place they can realign is at

the post-dominator of the divergence point.

The Disaligned-Loop walks both traces individ-

ually, updating their respective Execution Index stacks,

until the stacks are again identical (i.e., the traces have

realigned).

Each iteration, the algorithm selects the trace with the

larger stack size3, walking instructions in that trace until

its stack is no larger than the other trace’s stack. This loop

continues until both stacks are the same size, at which

point the Execution Indexes are again compared. If they

are still unequal, the process repeats with the trace con-

taining the larger stack. If the Execution Indexes are

equal at this point (i.e., the traces have realigned), the cur-

rent disalignment region is added to the output and the

Aligned-Loop begins again, starting from the realign-

ment point.

Anchor point selection. To use Execution Indexing for

alignment, we need an anchor point: two instructions (one

in each trace) that are considered aligned. While this may

seem like a circular problem, there are some points in the

execution where we are confident that both executions are

aligned. For example, if we always start tracing a pro-

gram at the first instruction for the created process, then

we can select the first instruction in both traces as anchor

points, as they are guaranteed to be the same program

point. Sometimes, starting execution traces from process

creation may produce execution traces that are too large.

In those cases, we can start the traces when the program

reads its first input byte, so the first instruction in each

trace is an anchor point.

4 Slice-Align

The trace alignment captures all flow differences between

both executions and establishes instruction correspon-

dence so that value differences in corresponding instruc-

tions can be identified. However, the total number of ex-

ecution differences can be large and many of those differ-

ences may not be relevant to the target difference. In this

section we present Slice-Align, a technique to produce the

causal difference graph, which captures only the causal

3If the stacks are the same size, this selection is unimportant since

both traces must be walked before realignment.

sequences of execution differences that affected the target

difference. The sequences are said to be causal because

each element in the sequence causes the execution differ-

ence of its successors through an immediate data or con-

trol dependency (this notion is defined more rigorously in

Section 4.4). The roots of the graph are the input differ-

ences that induced the target difference.

4.1 The Causal Difference Graph

The causal difference graph is a directed graph where

each node in the graph represents an instruction in an

execution trace. The graph has two sets of nodes and

edges: Np, Ep from the passing trace and Nf , Ef from

the failing trace. There are two types of edges: directed

edges representing immediate data and control dependen-

cies between two instructions in the same trace, and undi-

rected edges representing that two instructions in different

traces are aligned. Directed edges are distinguished by

whether they represent a control or data dependency (this

is depicted in Figure 3 by dotted and solid lines, respec-

tively). For data dependencies, the edge is labeled with

the operand name and value in the execution. For con-

trol dependencies, the edge is labeled with the divergence

type, defined in Section 4.2.

Note that an instruction has at most one immediate dy-

namic control dependency, but can have multiple imme-

diate data dependencies, e.g., one for each operand that

it uses (including memory addressing registers and the

FLAGS register). An operand can also depend on multiple

instructions, for example when each byte in a 32-bit reg-

ister was defined at a different instruction. In these cases,

operands are broken into individual bytes and the edges

labeled accordingly, so that the analyst can differentiate

the multiple out-edges of a node.

In our implementation, each node (i.e., instruction) is

labeled with its counter in the trace, its disassembly, and

its module and function information.

Layers. The graph has two levels of granularity, depend-

ing on how much information the analyst wants about

the dependencies inside disaligned regions. The Basic

graph summarizes each disaligned region with a single

node that represents all execution differences inside that

region. This layer is intended to help the analyst quickly

understand which disaligned regions are causally related

to the target difference and why they happened.

An analyst may be interested in “zooming in” on one

of those disaligned regions to understand the flow differ-

ences that it contains. For example, for an execution omis-

sion error, the disaligned region in the passing trace may

include the initialization statement that was not executed

in the failing trace. Although the Basic graph captures

the cause of the execution omission, the analyst may also

be interested in looking at the missing initialization. To
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Input: TD /* target difference */,RL /* alignment results */

Output: N,E // nodes and edges in causal difference graph

worklist : stack of instruction-pairs← ∅

processed : boolean lookup table← ∅;

worklist.push(TDp, TDf );
while !worklist.isEmpty() do

(insnp, insnf )← worklist.pop();

// Add current (aligned) instruction pair to the graph

N ← N ∪ insnp;

N ← N ∪ insnf ;

E ← E ∪ {insnp ⇔ insnf};
processed(insnp, insnf )← true;

if isAligned(insnp, insnf ,RL) then
// Get value-difference operands in current instruction

slice operands← valDifferences(insnp, insnf );
forall operand ∈ slice operands do

// Get immediate data slices for selected operand

dataDeps← immDataDeps(operand);
forall (depp, depf ) ∈ dataDeps do

// Add data dependency edges to graph

E ← E ∪ {insnp → depp};
E ← E ∪ {insnf → depf};
if !processed(depp, depf ) then

worklist.push(depp, depf );

end

end

end

else
// Instructions not aligned. Get divergence type (§4.2)

dtype← divRegionType(insnp, insnf ,RL);
switch dtype do

case ExtraExec or ExecOmission or ExecDiff
// Find dominant divergence point (§4.2)

div ←
domDivPt(dtype, insnp, insnf ,RL);
// Add control dependency edges to graph

E ← E ∪ {insnp → divp};
E ← E ∪ {insnf → divf};
if !processed(divp, divf ) then

worklist.push(divp, divf );

end

case InvalidPointer
// Is this invalid pointer due to a wild write?

if wildWrite(insnp, insnf ) then
// Get instruction in passing trace that is

// aligned with current failing trace insn.

alignedp ← alignedInsn(insnf ,RL);
if !processed(alignedp, insnf ) then

worklist.push(alignedp, insnf );

end

end

end

end

end

Figure 6: Algorithm for Basic graph.

handle these situations, Slice-Align provides an option to

explicitly include the causal sequences of execution dif-

ferences from one or more specific disaligned regions into

the Basic graph, creating an Enhanced graph.

In the next section we describe the Slice-Align algo-

rithm. We first describe the algorithm that builds the Ba-

sic graph and then the different handling of the disaligned

regions that is used to build the Enhanced graph.

4.2 Basic Graph Algorithm

At a high level, the Slice-Align algorithm combines dy-

namic slicing with trace alignment. In particular, it uses

backwards dynamic slicing techniques [2, 15, 32] to iden-

tify immediate data dependencies of value differences,

while using the trace alignment results to identify exe-

cution differences. As it traverses the execution traces,

it adds to the graph the value and flow differences with a

causal relationship to the target difference.

Overview. We present the pseudocode for the Slice-Align

algorithm in Figure 6. The algorithm loops over a worklist

of pairs of instructions, for which it needs to find depen-

dencies. The worklist is initialized with the instructions

that form the target difference. In each iteration the algo-

rithm pops a pair from the worklist, processes it (poten-

tially adding new nodes to the worklist), and repeats until

the worklist is empty.

When a pair of instructions (insnp,insnf ) is popped

from the worklist, a new node is added to the graph

for each instruction. Then, the isAligned function

checks whether the pair of instructions is aligned, us-

ing the results of the trace alignment step. If so, the al-

gorithm looks for value differences in its operands us-

ing the valDifferences function, which given two

corresponding operands, checks whether their values are

identical or, if they are pointers, compares their normal-

ized values (Section 4.5). For each operand that differs in

value, the function immDataDeps obtains its immediate

(non-transitive) data dependencies, i.e., the instructions in

the same trace that set the value of any byte in the operand.

For each data dependency returned by immDataDeps,

the algorithm adds an edge between the current instruc-

tion and the instruction that it depends on. If the imme-

diate dependencies have not been processed yet, they are

added to the worklist.

If the current pair of instructions are not aligned with

each other, a divergence has been found. At this point the

Basic graph algorithm switches to finding the dominant

divergence point, which is the closest divergence point

that dominates the disaligned instructions. Intuitively, this

dominant divergence point is the cause of the divergence

and corresponds to a flow-transfer instruction that leads to

two different targets in both executions, for which follow-

ing each branch would eventually lead to each of the dis-

aligned instructions, and for which there is no earlier re-

alignment point in both executions. Finding the dominant

divergence point comprises five different cases, which we

describe next. Once the dominant divergence point is

found, it is added to the worklist and the algorithm iter-

ates.
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Case Name Passing Failing

1 Extra Execution Aligned Disaligned

2 Execution Omission Disaligned Aligned

3 Execution Difference Disaligned Disaligned

4 Invalid Pointer Aligned Aligned

4a Wild Read Aligned Aligned

4b Wild Write Aligned Aligned

Table 1: The divergence types.

Divergence types. The algorithm distinguishes between

5 types of divergences, shown in Table 1, based on

whether the disaligned instructions belong to aligned or

disaligned regions. Note that these cases are named with

respect to the failing execution, because that is the execu-

tion that exhibits the unexpected behavior.

In both Case 1 and Case 2, only one of the instructions

is in an aligned region. In Case 1, the passing instruction

has a corresponding instruction but the failing instruction

does not. We call this an Extra Execution, since the fail-

ing trace executed extra instructions. In Case 2, the fail-

ing instruction has a corresponding instruction, but the

passing instruction does not. We call this an Execution

Omission, since the failing trace did not execute (but pre-

sumably should have executed) some instructions in the

passing trace. The algorithm handles both of these cases

similarly, adding to the worklist the immediate divergence

point from the disaligned instruction.

In Case 3, both instructions belong to disaligned re-

gions. This implies that at the dominant divergence point,

each run started executing different instructions, rather

than one run skipping instructions. We call this an Ex-

ecution Difference. The algorithm handles this case by

adding to the worklist the divergence point that dominates

both instructions.

In Case 4, both instructions belong to an aligned region

but the instructions do not align with each other. In other

words, each instruction aligns with an instruction other

than the one currently selected from the other trace (they

may be different instructions or the same static instruction

executed in different contexts, e.g., different iterations of

a loop). This means the current instructions are neither

extra nor omitted executions: both traces executed both

instructions, where each such instruction executed in the

same context as its corresponding (aligned) instruction in

the other trace – not the same context as the other cur-

rently selected instruction.

Despite the fact that the current instructions executed in

different contexts from each other, they somehow wrote to

the same operand – namely, the operand whose data slice

resulted in the pair being added to the worklist. More-

over, for the instruction from this pair that executed latest,

its equivalent (aligned) instruction in the other trace did

not write to that operand. If it had, the immediate data

slice would have returned that instruction, and the work-

list would have instead contained a pair of instructions

aligned with each other.

Notice that only way this can happen is when a value

difference manifests in a memory operand. Were this not

the case, it would not have been possible for the afore-

mentioned aligned instruction not to have written to the

same operand as the current instruction.

This situation may be contrasted with the execution

omission and execution difference cases described earlier,

in that they both relate to values that either should have

been read/written (but weren’t) or values that should not

have been read/written (but were). The key distinction

is that in the present case, the behavior is not caused by

differences in execution flow but rather value differences

manifested through indirect memory accesses (by virtue

of corrupted pointers).

We therefore call this case Invalid Pointer and differen-

tiate between two sub-cases: either a current instruction

is reading from an invalid memory location using a cor-

rupted pointer (Case 4a: Wild Read) or the defining in-

struction is writing to an invalid memory location using

a corrupted pointer (Case 4b: Wild Write). To differen-

tiate both subcases, the pointer used to dereference the

memory operand is checked. If the operand that holds the

pointer (described in Section 4.5) has a value difference,

then it is a wild read. In this case, the memory being

read is not interesting; what is interesting is the fact that

it was read, i.e., that the pointer used to read memory was

corrupt. Thus, the memory operand is pruned and the cor-

rupted pointer is added to the worklist. If the pointer is

not a value difference, then it is a wild write. In this case,

what is interesting is the fact that the pointer used to write

memory was corrupt. Thus, the algorithm adds the point-

ers in the defining instructions to the worklist.

Note that it is important to differentiate between these

subcases since they need to be handled differently. Also,

the fact that Slice-Align can identify wild reads and writes

is important for an analyst that may want to exploit these

invalid memory accesses.

4.3 Enhanced Graph Algorithm

To extend the Basic graph into an Enhanced graph that

includes the disaligned region(s) selected by the analyst,

the Slice-Align algorithm first generates a Basic graph,

and then initializes a new worklist with the selected re-

gions. For each item in the worklist, the algorithm pro-

ceeds as follows. First, the algorithm identifies the im-

mediate control dependency of the current instruction as

well as the data dependencies of its operands. If there is

a corresponding aligned instruction in the other trace, the

algorithm will prune the operands according to the tech-

niques described in Section 4.5. The dependency edges
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are added to the graph, and if the target of the dependency

has not been processed by the Basic graph algorithm, it

is added to the worklist so that its dependencies will in

turn be explored by the Enhanced graph algorithm. This

process iterates until the worklist is empty.

4.4 Identifying Input Differences

As the failing execution progresses, the difference-

inducing state propagates from the input difference(s) to

the target difference through one or more chains of flow

and value differences. We say that a difference X affects

another difference Y if there exists at least one such chain

from X to Y . In this section, we prove that the Enhanced

graph algorithm will locate all, possibly multiple, input

differences that affect the target difference.

We use uppercase letters when referring to execution

differences (which are defined over pairs of statements)

and lowercase letters when referring to specific state-

ments. We add subscripts to execution difference sym-

bols when we wish to differentiate between value and flow

differences. For example, a value difference XVAL is de-

fined over statement pair (px,fx), while a flow difference

XFLOW is defined over statement pair (px,⊥) or (⊥,fx).

We now define data and control dependence over exe-

cution differences. Informally, these definitions are based

on their analogs in dynamic program slicing (i.e., edges

in the program dependence graph [10, 13]), except they

are defined with respect to pairs of execution statements

rather than statements from a single execution.

Let X and Y be two distinct execution differences. We

say Y is data dependent on X (denoted Y
DD
−−→ X) iff

py
dd
−→ px ∧ fy

dd
−→ fx. Similarly, Y is control dependent

on X (denoted Y
CD
−−→ x) iff py

cd
−→ px ∧ fy

cd
−→ fx. If

X or Y are flow differences, then only the predicate for

the flow-differing statement needs to hold (equivalently,

we say ⊥
dd|cd
−−−→ ⊥ and ∀x ⊥

dd|cd
−−−→ x ∧ x

dd|cd
−−−→ ⊥).

Note that the direction of arrows in this notation reflects

the definitions of data and control dependence, where the

source (informally, cause) of the transition appears at the

head of the arrow. For example, a transition from differ-

ence A to difference B through data dependency is de-

noted B
DD
−−→ A.

We make the following assumptions as motivated ear-

lier. First, the chain of execution differences from an input

difference to the target difference is both causal and de-

terministic. Second, any execution difference must come

from another difference. Finally, the relationship between

two execution differences is either data or control depen-

dency.

We now show that even though we prune many irrele-

vant execution differences, the input differences are guar-

anteed to be present in the causal difference graph.

Theorem 1. Any input difference that affects the target

difference will appear in the causal difference graph.

Proof. Our proof is by induction over the legal transitions

between execution differences (e.g., edges in the graph).

In particular, we demonstrate that for any transition from

X to Y (i.e., Y
DD|CD
−−−−−→ X), if Y appears in the worklist,

then X will be identified by the algorithm and added to

the worklist.

In the base case, if the input difference appears in the

worklist then, by definition of input difference, there are

no more dependencies and the algorithm completes suc-

cessfully.

For the inductive step, we enumerate all transitions

from X to Y (i.e., YVAL|FLOW

DD|CD
−−−−−→ XVAL|FLOW) that

may occur along the causal path, and explain how the

Slice-Align algorithm identifies the source of the transi-

tion in each case.

First, consider a transition from a value difference XVAL

to another value difference YVAL. Note that YVAL cannot

be control dependent on XVAL since a value difference at

branch XVAL would necessarily imply a control flow dif-

ference, but by the definition of value difference, the state-

ments in YVAL are aligned. Thus, we need only consider

the dependency YVAL
DD
−−→ XVAL. If YVAL appears in the

worklist, then XVAL will be identified by the data slicing

in the Basic graph algorithm, which adds the data depen-

dencies of every value difference to the worklist.

Next, consider a transition from a value difference

XVAL to a flow difference YFLOW. This transition can be

caused by either a data dependency or a control depen-

dency. For a control dependency (YFLOW
CD
−−→ XVAL),

XVAL must be a divergence point, by the above argu-

ment. Then XVAL will be identified by the Basic graph

algorithm, which adds the divergence point of flow differ-

ences to the worklist. For a data dependency (YFLOW
DD
−−→

XVAL), the full slicing step of the Enhanced graph algo-

rithm will add XVAL to the worklist. Note that the wild

write processing (Case 4b in Table 1) does not handle this

situation since it applies only to aligned statements.

The third case is a flow difference XFLOW to a value dif-

ference YVAL. Note that an aligned statement (e.g. value

difference) cannot be control dependent on a flow differ-

ence, so here we need only consider the case of data de-

pendency (YVAL
DD
−−→ XFLOW). Intuitively, this type of

transition means that a disaligned statement wrote a value

which was read by the program after realignment (e.g., an

execution omission). Like the first case, XFLOW will be

identified by the Basic graph algorithm since it represents

a data dependency where the source is a value difference.

Finally, consider the case of a flow difference XFLOW to

a flow difference YFLOW. This transition could represent a

data dependency or a control dependency. In either case,
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the full slicing step of the Enhanced graph algorithm will

add XFLOW to the worklist.

Our induction hypothesis guarantees that for any node

Y that already appears in the worklist, the Slice-Align al-

gorithm will eventually reach the head of all causal dif-

ference paths through Y . By definition of the affects re-

lationship, there must exist at least one causal difference

path from each input difference to the target difference.

Thus, the proof is complete by noting that the Slice-Align

algorithm adds the target difference to the initial worklist.

4.5 Extended Pruning with Address Nor-

malization

An important feature for the scalability of Slice-Align is

the ability to prune edges in the graph when an operand

of an aligned instruction has the same value in both ex-

ecution traces. Without pruning, the graph may explode

in size because the nodes that explain how those identical

values were generated need to be included, even if iden-

tical values cannot be the cause of other execution dif-

ferences. A basic approach is to prune an operand when

its corresponding operand in the other execution has the

same value. However, such pruning is limited because

many operands contain pointers that may not have iden-

tical values between executions but are still equivalent to

each other (e.g., point to equivalent objects).

To address this problem, we use a memory normaliza-

tion technique that extends the basic pruning to include

equivalent pointers, even if they have different values.

This extended pruning identifies operands that hold point-

ers, applies pruning based on the normalized addresses of

those pointers, and prunes other operands by direct value

comparison.

Recall that the address of a memory operand in an

x86 instruction is computed as: address = base + (in-

dex * scale) + displacement, where the scale and the dis-

placement are constants and the base and index values are

stored in registers. The base register value and displace-

ment can both be pointers, as can the index register value

if the scale equals 1. The first step to prune a pointer is

to identify where it is stored. For this, we simply select

the largest of the three as the candidate pointer for the

operand.

If the candidate pointer is the offset then we are done, as

it is a constant with no further dependencies. Otherwise,

our memory normalization tries to determine whether the

pointers, stored in the index or base register, are equiva-

lent in the two executions. This process, described next,

comprises two steps. First, each pointer is classified as a

heap pointer, stack pointer, or data section pointer. If both

pointers have the same classification, a specific normal-

ization rule for that class is applied.

Heap pointer pruning. Direct comparison of heap point-

ers often fails because equivalent allocations can return

different pointers. The first step in heap pointer pruning

is to check whether the value of the candidate pointer in

each trace belongs to a live heap buffer. For this, dur-

ing program execution the execution monitor produces an

allocation log that captures the dynamic memory alloca-

tions/deallocations performed by the program. We have

implemented an API that reads this allocation log and can

answer, for a given memory address and a given point in

the execution, whether there is any live buffer that con-

tains the address. If so, the API provides the buffer infor-

mation, including the buffer start address, the buffer size,

and the allocation site (i.e., the counter of the allocation’s

call instruction).

If both candidate pointers point to the heap, we try

to prune them. The key intuition to normalize heap ad-

dresses is that an allocation invocation that is aligned

returns an equivalent pointer in each execution. More

specifically, we prune a candidate heap pointer if: 1) the

allocation site for the live buffers that contain the pointed-

to addresses are aligned (we determine this fact post-hoc

using the alignment results), and 2) the offset of those

pointed-to addresses, with respect to the start address of

the live buffer they belong to, is the same. If both proper-

ties are satisfied, the register holding the pointer is pruned.

In practice, since the allocation log starts at process cre-

ation but the trace starts when the first input byte is read,

no alignment information is available for allocation sites

of live buffers created before the first input byte is read.

To enable pruning in these cases, we apply a more aggres-

sive heuristic that assumes the above condition 1) is true

and prunes if condition 2) is satisfied.

Stack pointer pruning. Direct comparison of stack

pointers may fail because each thread of a process has

a different stack and because the base address of the

stack (highest stack address) can be randomized using

Address Space Layout Randomization (ASLR) [4]. To

check whether the value of the candidate pointers point to

the stack, the range of stack addresses accessed by each

program thread in the execution trace is computed and

rounded to the nearest page boundaries. The candidate

pointer points to the stack if its value is contained in its

thread’s stack range. If both candidates are stack pointers,

they are normalized by subtracting the thread’s stack base

address. If the resulting offsets are identical the register

holding the pointer is pruned from the graph.

Data section pointer pruning. Direct comparison of data

section pointers may fail if a dynamically loaded module

(e.g., a DLL) was loaded at different base addresses in

both executions. Since the execution trace contains all

the modules (base address and size) that were loaded in

the address space of the process, here for each candidate
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Name Program Vuln. CVE OS

reader-e1 Adobe Reader 9.2.0 Unknown XP SP3

reader-e2 Adobe Reader 9.2.0 Unknown XP SP3

reader-u1 Adobe Reader 9.2.0 Unknown XP SP3

reader-u2 Adobe Reader 9.2.0 Unknown XP SP3

reader-u10 Adobe Reader 9.2.0 Unknown XP SP3

reader-u11 Adobe Reader 9.2.0 Unknown XP SP3

reader-u14 Adobe Reader 9.2.0 Unknown XP SP3

firebird Firebird SQL 1.0.3 2008-0387 XP SP2

gdi-2008 gdi32.dll v2180 2008-3465 XP SP2

gdi-2007 gdi32.dll v2180 2007-3034 XP SP2

tftpd TFTPD32 2.21 2002-2226 XP SP3

conficker W32/Conficker.A N/A XP SP3

netsky W32/Netsky.C N/A XP SP3

Table 2: Programs and vulnerabilities in the evaluation.

pointer value we check if it belongs to the address range

for each module. If both candidate pointers belong to the

same module, we normalize the address by subtracting the

module’s base address and compare the resulting offset,

pruning the memory register if the offsets are identical.

5 Evaluation

In this section we evaluate our differential slicing ap-

proach. The evaluation comprises three parts. First, in

Section 5.1 we evaluate our tools for failure/vulnerabil-

ity analysis on 11 vulnerabilities. We show that our dif-

ferential slicing approach greatly reduces the number of

instructions and trace differences that an analyst needs

to examine to understand a vulnerability. Then, in Sec-

tion 5.2 we perform a user study with the help of two

vulnerability analysts to understand how useful our dif-

ferential slicing approach is for real users. Finally, in Sec-

tion 5.3 we evaluate our tools for analyzing 2 malware

samples with environment-dependent behaviors.

The causal difference graphs for these samples are

available online [1].4

5.1 Evaluating the Causal Difference

Graph

In this section we analyze our differential slicing approach

on the 11 vulnerabilities listed in the top portion of Ta-

ble 2. For each vulnerability, we are given two inputs:

a failing input that manifests a crash and a passing in-

put that does not. Here, both inputs differ only in one

4Undirected (alignment) edges are used when rendering the graphs

to place aligned instruction pairs at the same vertical position (wherever

possible), as shown in Figure 3. However, these edges are not displayed

to avoid visually cluttering the graphs.

byte. These give us some ground truth for crashes in pro-

grams with no publicly available source code (i.e., Adobe

Reader and GDI, a built-in graphics library in Windows)

because we know that the byte difference between inputs

should be identified as the only input difference in our

graphs. Specifically, for the Adobe Reader and GDI vul-

nerabilities, the input PDF or WMF files have only one

byte with a different value, and for the tftpd and firebird

vulnerabilities, the passing input is one byte shorter than

the failing one.

Relevant execution differences. The first step of our dif-

ferential slicing approach is to align the two traces. As a

preparation step, since only one thread is involved in the

crashes that we evaluate, we extract the relevant thread

from each trace, creating two single-threaded traces. Af-

ter aligning the execution traces, we count the number

of disaligned regions (Column Disaligned regions (All)

in Table 3). Next, we generate the causal difference

graph for each vulnerability and count the number of dis-

aligned regions in the graph (Column Disaligned regions

(Slice-Align)). The results show that for the more com-

plex Adobe and tftpd examples, which come from larger

execution traces (shown later in Table 5), the number of

disaligned regions in the graph is only 4%-48% of the to-

tal number of disaligned regions. Thus, our differential

slicing approach removes a large number of disaligned re-

gions that are not relevant to the crash. For the smaller ex-

amples (firebird and both GDI vulnerabilities), the num-

ber of total disaligned regions is small enough that all of

them are relevant to the crash. Even if the graph does

not remove disaligned regions in these cases, it still pro-

vides causality information to the analyst and prunes away

many unrelated nodes in those regions that have no value

difference.

The causal difference graphs for reader-e1, -u2, -u10,

-u11, and -u14 identify execution omission errors. This

means that for those vulnerabilities, the causal path re-

turned by a dynamic slice (data and control dependencies)

on the crashing instruction in the failing trace would not

make it back to the input differences, as relevant state-

ments are not present in the failing trace.

Graph size. Table 4 presents the evaluation of the graph

size in three situations. For each situation, the Pass and

Fail columns show the total number of nodes in the pass-

ing and failing graphs, respectively, and the # IDiff col-

umn shows the number of input differences (i.e., root

nodes) in the graph.

The Basic pruning columns show the graph sizes when

only direct value comparisons between operands are used

to identify value differences. The Extended pruning

columns show the graph sizes when we incorporate ad-

dress normalization so that equivalent pointers can also

be pruned. Note that the Extended pruning columns cor-
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Name
Total instructions Disaligned instructions Disaligned regions

Passing Failing Passing Failing All Slice-Align

reader-e1 2,800,163 1,819,714 1,307,465 327,016 983 471

reader-e2 1,616,642 1,173,531 446,273 3,162 75 5

reader-u1 2,430,400 1,436,993 2,034,582 1,041,175 111 32

reader-u2 1,921,514 1,053,840 656,183 14,586 38 23

reader-u10 408,618 272,994 144,517 8,893 39 4

reader-u11 1,868,942 1,112,828 1,504,189 748,075 389 235

reader-u14 1,194,053 155,906 601,789 119,085 524 59

tftpd 626,622 350,323 415,086 138,787 87 4

firebird 6,698 1,282 5,551 135 4 4

gdi-2008 42,124 4,310 38,743 929 1 1

gdi-2007 36,792 4,310 33,508 1,026 1 1

Table 3: Total disaligned instructions and regions compared with disaligned regions in graph.

Name
Basic pruning Extended pruning

Pass Fail # IDiff Pass Fail # IDiff

reader-e1 3,651 3,616 7 2,324 2,292 7

reader-e2 4,854 4,853 21 81 84 1

reader-u1 2,753 2,751 13 204 201 1

reader-u2 135 135 1 100 100 1

reader-u10 45 43 1 36 34 1

reader-u11 1,584 1,562 1 1,158 1,135 1

reader-u14 1,714 1,695 6 425 420 1

tftpd 254 254 1 254 254 1

firebird 45 46 1 45 46 1

gdi-2008 100 101 1 96 97 1

gdi-2007 11 12 1 7 8 1

Table 4: Causal difference graph evaluation. The Extended pruning column corresponds to the size of the output graph.

respond to the actual output of our tool. The results show

that for the Adobe Reader experiments, the address nor-

malization greatly improves the pruning. In some experi-

ments (namely, reader-e2 and reader-u1), extended prun-

ing reduces the number of nodes in the graph by between

one to two orders of magnitude. Additionally, the results

for the reader-e2, -u1, and -u14 experiments show that the

address normalization often reduces the number of false

positive input differences. For the rest of the experiments,

basic and extended pruning achieve comparable results.

As expected, for the programs that take a file as in-

put (Adobe, GDI), where the only difference between the

passing and failing inputs is the value of one byte, the

graph captures that the input difference is the byte that dif-

fers between the program inputs. Note that for reader-e1,

the graph also identifies six additional input differences

(i.e. false positives). This is likely due to the conserva-

tive nature of our pruning techniques, which are designed

to minimize incorrect pruning which might prevent the

causal graph from reaching the correct input differences.

In the remainder of this section, we detail how the

causal difference graph helps an analyst in the Tfptd and

Firebird vulnerabilities, describe results for inputs with

multi-byte differences, and present a performance evalua-

tion.

Tfptd. For the tftpd vulnerability there is only one in-

put difference in the graph, which captures that byte 245

in the received network data has value 0x7a in the fail-

ing trace and 0x00 in the passing trace. The fact that if

byte 245 was a null terminator the program would not

crash is an immediate red flag for an analyst, because it

is common in buffer overflows that an application reads

input until it finds a delimiter (0x00 is the string delim-

iter). If the delimiter appears beyond the length of the

buffer and the program does not check this, an overflow

occurs, which is what happens in this case. More impor-

tantly, the causal graph also explains exactly how this in-

put difference contributed to the crash, information that is

potentially helpful for patching or exploiting the bug and

would not be revealed using simpler diagnosic tools (e.g.,

running diff on the input buffers).

Firebird. For the firebird vulnerability there is only one

input difference in the graph. Surprisingly, the input dif-

ference does not correspond to any values in the received

network data, rather, it corresponds to the return value of
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Name

Trace size Tracing

(MB) (sec.) Trace align Slice-Align

Pass Fail Pass Fail (sec.) (sec.)

reader-e1 202 106 482 365 1,684 3,510

reader-e2 143 67 345 337 1,180 1,291

reader-u1 200 133 403 406 714 101

reader-u2 110 61 208 295 152 208

reader-u10 24 16 267 275 39 24

reader-u11 152 101 155 161 462 364

reader-u14 160 107 195 192 837 239

tftpd 3.6 2.0 13 12 50 12

firebird 2.5 0.1 1 1 1 0.2

gdi-2008 2.4 0.4 2 0.8 2 0.5

gdi-2007 2.1 0.4 2 0.8 2 0.3

Table 5: Performance evaluation.

the ws2 32.dll::recv function, which corresponds

to the the size of the received network data. Thus, in this

case just knowing the input difference immediately tells

an analyst that the crash is related to the different size of

the input.

Multi-byte input differences. To evaluate whether the

causal difference graph only contains the relevant subset

of input differences in the presence of multiple differences

in the program input, we repeat the reader-u10 experiment

four times. In each experiment, we double the number of

bytes that differ from the failing input by randomly flip-

ping bytes in the original passing input (making sure the

new input does not crash Adobe Reader). For the four ex-

periments, the total number of byte differences between

the passing and failing inputs is 4, 8, 16, and 32. We com-

pare the new graphs with the original one and observe that

even if the number of differences in the program input has

increased, the graph has not changed and the only input

difference corresponds to the original byte difference that

caused the crash. Thus, Slice-Align successfully filters

out input differences not relevant to the crash.

Performance. Table 5 shows the performance evaluation,

including the size of the passing and failing traces, the

time it took to take the traces, the time to align the traces,

and the time to generate the Slice-Align graphs. The re-

sults show that the time to take a trace is below 8 minutes

for every trace, and Slice-Align never takes more than 1

hour to generate the causal difference graph. This saves

significant time compared to an analyst’s manual work.

5.2 User Study

An important but too often overlooked metric for evalu-

ating an analysis tool is how useful it is for the analysts.

To evaluate the usefulness of our differential slicing tool

for vulnerability analysts, we conduct a user study with

two subjects. Subject A is an analyst at a commercial se-

curity research company. Subject B is a research scientist

and was a new member of our research group at the time

of this experiment. Neither subject had any involvement

in the development of this work, nor had they used our

group’s binary analysis tools before the experiment. We

emphasize that this user study is informal, as it is designed

to help understand qualitatively how the causal difference

graphs are useful in practice.

Experiment setup. The subjects analyze two vulnerabil-

ities from the set in Table 2: reader-e2 and reader-u10.

We select these two vulnerabilities based on their similar

complexity (both are exploitable vulnerabilities in Adobe

Reader). Neither subject had previously analyzed either

of these vulnerabilities. Our ground truth for these vul-

nerabilities comes from prior manual analysis by a third

analyst, not involved in the user study.

Each subject analyzes one vulnerability using any tech-

niques he chooses, but without access to our graphs (Sam-

ple 1). For analyzing the other vulnerability, we addition-

ally provide them with the corresponding causal differ-

ence graph (Sample 2). We switch the vulnerability se-

lected for Sample 1 and Sample 2 for the two subjects.

For both samples, we provide the subjects with 1) an in-

put that triggers the crash, 2) a similar input that does not

crash and differs from the crashing input by 1 byte, and 3)

the execution traces for both of these inputs.

We instruct the subjects to stop their analysis once they

understand enough about the vulnerability that they are

confident they know how to exploit or fix it. We also in-

struct them to keep track of how long it takes to analyze

each sample, as well as the steps they take during analysis.

Summary of results. Table 6 summarizes the results of

the user study. The commercial security analyst spent 13

hours analyzing Sample 1 and successfully identified the

root cause. He spent 5.5 hours analyzing Sample 2 and

also successfully identified the root cause. The academic

researcher spent 3 hours analyzing Sample 1 before giving
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Subj.

Sample 1 Sample 2

(no graph) (Causal difference graph)

sample time found sample time found

(hr) cause? (hr) cause?

A reader-e2 13 ✓ reader-u10 5.5 ✓

B reader-u10 3 ✗ reader-e2 3 ✓

Table 6: Results for user study.

up. He was able to understand the root cause of Sample

2 using the causal difference graph in approximately the

same amount of time.

Based on post-experiment feedback from the subjects,

we make the following observations about how the infor-

mation from the causal difference graph helped with vul-

nerability analysis. Both analysts frequently needed to

track the flow of data, which for Sample 1 required set-

ting breakpoints in a debugger and re-executing the pro-

gram. These breakpoints were hit several hundred times,

so the analysts spent significant time determining which

instances of that instruction were important. They also

discovered that some of these data dependencies were not

relevant for understanding the crash, but only after invest-

ing considerable effort tracking these dependencies.

In contrast, the analysts used the graphs to quickly track

the flow of data, compare values between executions, and

locate flow differences. The graphs displayed only the in-

structions that contributed to the fault, obviating the need

to investigate all data paths to determine their relevance.

The graphs also reduced the tedium of tracking depen-

dencies through loops and frequently exercised regions of

code. For example, the graphs identified extra (i.e. dis-

aligned) iterations of loops as well as value differences

corresponding to iterations that wrote data contributing to

the crash. Although we gave the subjects instructions for

generating Enhanced graphs, they did not find this neces-

sary, and analyzed Sample 2 using only Basic graphs.

5.3 Identifying Input Differences in Mal-

ware Analysis

In this section we evaluate how differential slicing helps

when analyzing malware samples that behave differently

depending on the environment where they run. Our ap-

proach assumes that we are given the execution traces

that manifest the behavior difference or prior knowledge

about how to generate them. In particular, we select a

W32/Conficker.A malware sample that has been previ-

ously reported to avoid malicious behavior if the keyboard

layout is Ukrainian [19] and a W32/Netsky.C malware

sample that is known to have time triggered functional-

ity [23]. The goal of the analysis is to collect enough

information to write a rule that bypasses the checks that

trigger the behavior difference [14]. For this, the analyst

needs to identify the subset of the environment used to

decide the behavior, as well as the location of the checks

performed on that part of the environment. Note that in

these experiments we do not provide any explicit inputs

to the malware; the environment is the only input.

W32/Conficker.A Previous analysis shows how to gen-

erate the difference in behavior but does not specify the

location of the trigger checks [19]. To generate the traces,

we follow that analysis and run the malware with the key-

board layout set to Ukrainian (failing trace) and set to US-

English (passing trace). Note that the failing trace is the

one that does not exhibit malicious behavior because that

is the unexpected behavior for malware.

To select the target difference, we compare the list of

external functions invoked by the malware in each exe-

cution and observe that in the passing execution the mal-

ware creates a new thread, but that does not happen in the

failing execution. Thus, we select the call point for the

CreateThread function, which is a flow difference, as

the target difference. According to the alignment results,

this function call is present in a large disaligned region

that contains 133,774 instructions, which is only present

in the passing trace.

The produced causal difference graph has a sin-

gle input difference corresponding to the return value

of the user32.dll::GetKeyboardLayoutList

function, used by the program to return the keyboard lay-

out identifier. Thus, in this case the input difference is

an environment difference in the form of the return value

of a system call. The graph contains 16 nodes for both

executions, including 3 divergences: the disaligned target

difference and two execution omissions. The first execu-

tion omission is produced by a different number of locale

identifiers returned by GetKeyboardLayoutList in

both executions, while the final one is produced by the

instruction cmpw $0x422, (%edi,%esi,4) which

checks if the keyboard layout identifier has value 0x422,

the identifier for a Ukrainian locale.

W32/Netsky.C Previous analysis identifies that Netsky.C

makes the computer speaker beep continuously if the time

is between 6am and 9am on February 26, 2004 [23], but

does not identify the location of the trigger checks. To

generate the traces, we run the malware with the sys-

tem local time set to 7:24am (passing trace) and with the
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system local time set to 12:24pm (failing trace), both on

February 26, 2004. Based on the available information,

we select the target difference to be the call point of the

Beep function, which only appears in the passing trace.

The produced causal difference graph has a single in-

put difference that corresponds to the output value of the

kernel32.dll::GetLocalTime system call, used

by the program to obtain the system time. The graph con-

tains a total of 31 nodes, with one divergence that corre-

sponds to the disaligned target difference. This disalign-

ment is produced by different hour digits computed from

the result of GetLocalTime in both executions. In par-

ticular, the graph shows that the malware checks whether

the hour digit is equal to 7 and starts beeping if so. (Note

that malware first checks whether the hour digit is equal to

6, but since this check is false in both executions, it is not

relevant to the observed malicious behavior and therefore

does not appear in the graph.)

In both of these experiments, the causal difference

graph successfully captures the parts of the environment

relevant to the trigger, as well as the location of the trigger

checks, providing detailed information about the trigger-

ing mechanisms which could be used by an analyst, for

example, to construct bypass rules.

6 Related Work

Differential program analysis. Differential program

analysis refers to analyses pertaining to differences be-

tween two similar programs [28]. Most previous work

in this domain focuses on software engineering applica-

tions such as regression testing [12, 29] and input genera-

tion [25].

Most similar to our approach is dual slicing [26], a

technique for debugging concurrency bugs. Like our ap-

proach, dual slicing focuses on execution differences us-

ing two traces. However, dual slicing only applies to exe-

cution differences introduced by different thread sched-

ules, rather than program input or environment differ-

ences. As a result, the causal paths stop at def-use differ-

ences, so dual slicing is unable to identify the root cause

for differences which are not caused by thread schedul-

ing. Also, the dual slicing algorithm compares values di-

rectly across executions, without any address normaliza-

tion techniques (such as those described in Section 4.5).

Finally, dual slicing requires access to source code, while

our approach works directly on binaries.

Also related is work by Sumner and Zhang [21], which

creates a causal path for two executions by first patching

the failing execution dynamically. They do so by modify-

ing variables and predicates at runtime to produce a pass-

ing execution, a technique first proposed by Zhang et al.

to detect execution omission errors [33]. If such a patch

is found, then both runs are aligned and relevant variables

are identified through value mutations. The main differ-

ence with our technique is that we identify implicit flows

and execution omissions relevant to the target difference

by comparing both executions without re-executing the

program.

Trigger detection. Our approach complements existing

techniques for identifying and inducing trigger-based be-

haviors in malware. These techniques can be used to ob-

tain the execution traces manifesting the trigger-based be-

havior, which differential slicing requires as input when

analyzing such malware. In contrast to these special-

ized techniques, however, our approach is agnostic to the

specific mechanisms of the trigger behavior. Is is there-

fore guaranteed to identify trigger conditions regardless

of which techniques (if any) were used to induce the be-

havior, or how much information is known a priori about

the triggering mechanisms.

As an example of such trigger detection techniques,

Crandall al. [9] present a method for identifying time-

based behavior by perturbing the system time of a virtual

machine and observing for different behaviors. Similarly,

researches have used dynamic analysis to explore multi-

ple execution paths in order to identify hidden behavior

in malware [5, 17]. Finally, Comparetti et al. [8] present

a more general approach for modeling the behavior of bi-

nary programs in order to statically deduce the presence

of similar functionality in other programs.

The benefit of using differential slicing for analyzing a

given trigger-based behavior is that the above techniques

are ill-suited for use by analysts. They can provide coarse-

grained information about the presence or lack of trigger-

based behavior, as well as inputs to trigger the behavior,

but only in specific cases (e.g., time-based triggers) and

with auxiliary information (e.g., hand-crafted signatures

of system calls) can they summarize the trigger conditions

in human-understandable format. Compared to the above

techniques, differential slicing outputs a causal difference

graph that provides fine-grained information about the lo-

cation of the trigger checks and the parts of the input rel-

evant to the trigger, in a visual form better suited for a

human analyst.

Slicing. One widely used debugging technique proposed

by Weiser is (static) program slicing [27], which produces

a slice containing parts of a program that are relevant to

the computation of a particular value, called the slicing

criterion. Korel and Laski proposed a dynamic version

called dynamic slicing [15], which works on a single exe-

cution and outputs the executed statements relevant to the

slicing criterion. There are four main flavors of dynamic

slicing, based on the dependencies included in the slices:

thin slicing [20] includes a subset of data dependencies,

data slicing [32] includes all data dependencies, full slic-
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ing [15] includes data and control dependencies, and rele-

vant slicing [3, 11], in addition to data and control depen-

dencies, also includes predicates, and chains of potential

dependencies rooted at these predicates, whose execution

did not affect the slicing criterion but could have affected

it if they had been evaluated differently. The main dif-

ference with our approach is that differential slicing only

considers execution differences to be relevant to the target

difference. Thus, instead of a causal path of instructions,

differential slicing builds a causal difference graph of ex-

ecution differences. In addition, differential slicing can

capture execution omission errors that thin slicing, data

slicing, and full slicing cannot capture because they are

not present in the execution, as well as implicit flows that

thin slicing and data slicing cannot capture. Static and rel-

evant slices will include execution omissions and implicit

flows but will produce large slices.

Delta debugging. Delta debugging is a technique for iso-

lating and minimizing failure-inducing inputs automati-

cally [31]. Compared to delta debugging, our differen-

tial slicing approach uses information about the execu-

tion (i.e., is white-box) to identify input differences that

are relevant to the target difference. However, delta de-

bugging can complement our approach by minimizing in-

puts such that they differ by the smallest amount neces-

sary to induce the observed execution difference (indeed,

we generated many of the inputs for our experiments us-

ing a variation of this technique). Zeller et al. develop

a failure analysis approach that uses delta debugging to

compare the states of a faulty and correct execution at the

time the fault is observed [7,31]. An important difference

with these works is that we compute the causal difference

graph offline, without re-executing the program in a mu-

tated memory state.

Trace alignment. Xin et al. [30] propose Execution

Indexing to establish a correspondence between points

across executions based on the structure of the execution.

In this work we use Execution Indexing as a basis for our

trace alignment algorithm. Another offline trace align-

ment algorithm was proposed by Liang et al. [16] to iden-

tify similar execution traces for fault localization. In con-

temporaneous and independent work, Sumner et al. [22]

canonicalize the memory locations and pointer values us-

ing memory indices and apply them to compare memory

snapshots of two runs at selected execution points. Their

work is similar to the technique we use for address nor-

malization, but it requires access to source code.

7 Conclusion

In this paper we have presented a novel differential slicing

approach. Given two executions of the same program and

a target difference in those executions, differential slicing

produces a causal difference graph. This graph captures

the input differences that caused the target difference, as

well as the causal sequence of execution differences that

led the program from the input differences to the target

difference.

Our differential slicing approach comprises two main

steps. First, the two traces are aligned using an efficient

trace alignment algorithm that we have developed based

on Execution Indexing [30]. The alignment results enable

identifying flow and value differences across the execu-

tions. Then, our Slice-Align algorithm outputs a causal

difference graph, which the analyst uses to quickly under-

stand the target difference.

We have implemented our differential slicing approach

and evaluated it on the analysis of 11 real-world vul-

nerabilities and two malware samples with environment-

dependent behaviors. Our results show that the causal

difference graph often reduces the number of instructions

that an analyst needs to examine for understanding the tar-

get difference from hundreds of thousands to a few dozen.

We confirm this in a user study with two vulnerability an-

alysts, which shows that our graphs significantly reduce

the amount of time and effort required for understanding

two vulnerabilities in Adobe Reader.

8 Acknowledgments

This project was the result of joint work with Juan Ca-

ballero. The author also acknowledges the valuable con-

tributions of Kevin Chen, Stephen McCamant, Pongsin

Poosankam and Daniel Reynaud, who helped with fig-

ures and experiments and proof-read early versions of this

manuscript. The project and this manuscript also benefit-

ted immensely from feedback by David Wagner and Vern

Paxson.

We would like to thank Dan Caselden and Charlie

Miller for providing the Adobe Reader samples and for

their valuable feedback on our tool, and Pierre-Marc Bu-

reau for his help with the Conficker experiment.

This material is based upon work partially supported

by the National Science Foundation under Grants No.

0311808, No. 0832943, No. 0448452, No. 0842694,

No. 0627511, No. 0842695, No. 0831501, No. 0424422,

by the Air Force Research Laboratory under Grant No.

P010071555, by the Office of Naval Research under

MURI Grant No. N000140911081, and by the MURI

program under AFOSR Grants No. FA9550-08-1-0352

and FA9550-09-1-0539. Juan Caballero was also par-

tially supported by Grants FP7-ICT No. 256980, FP7-

PEOPLE-COFUND No. 229599, and Comunidad de

Madrid No. S2009TIC-1465. Any opinions, findings, and

conclusions or recommendations expressed in this mate-

rial are those of the authors and do not necessarily reflect

the views of the funding agencies.

18



References

[1] SliceAlign graphs for samples in paper. http://

cs.berkeley.edu/˜noahj/slicealign.pdf.

[2] H. Agrawal and J. R. Horgan. Dynamic program

slicing. ACM SIGPLAN Notices, 25(6), June 1990.

[3] H. Agrawal, J. R. Horgan, E. W. Krauser, and

S. London. Incremental regression testing. In ICSM,
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